

How will AI affect jobs, skills, wages, and productivity?

pwc.com/aijobsbarometer

Headline Findings

4.8x

Sectors with highest AI penetration are seeing almost fivefold (4.8x) greater labour productivity growth. Rising labour productivity can generate economic growth, higher wages, and enhanced living standards.

25%

Jobs that require AI specialist skills carry up to a 25% wage premium in some markets.

3.5x

Growth in jobs that require AI specialist skills has outpaced all jobs since 2016 (well before ChatGPT brought fresh attention to AI), with numbers of AI specialist jobs growing 3.5 times faster than all jobs.

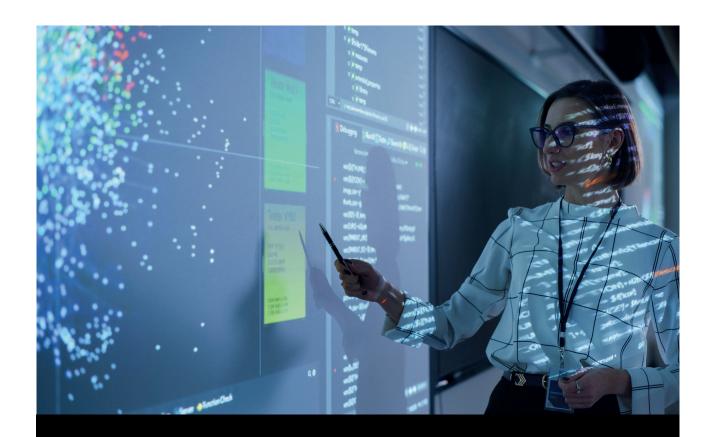
25%

Skills sought by employers are changing at a 25% higher rate in occupations most able to use Al. To stay relevant, workers in these jobs will need to build or demonstrate new skills.

Al is the Industrial Revolution of knowledge work, transforming how all workers can apply information, create content, and deliver results at speed and scale. How is this affecting jobs? With the Al Jobs Barometer, PwC set out to find empirical evidence to help sort fact from fiction.

PwC analysed over half a billion job ads from 15 countries to find evidence of Al's impact at worldwide scale through jobs and productivity data.

PwC tracked the growth of jobs that demand specialist Al skills (such as machine learning or neural networks) across countries and sectors as an indication of Al penetration. We find that Al penetration is accelerating, especially in professional services, information & communication, and financial services. Workers with specialist Al skills command significant wage premiums, suggesting that their abilities to deploy Al are valuable to companies.


¹ Al's true penetration into the economy may be even greater than reflected in this analysis. By focusing on job ads, this analysis captures Al's impact on job changers, but does not capture Al usage or upskilling for existing employees.

The Al Jobs Barometer uses half a billion job ads from 15 countries to examine Al's impact on jobs, skills, wages, and productivity

But Al's impact is not limited to only those workers who have specialist Al skills. Many, if not most, workers who use Al tools in their work do not have or need these specialist skills. For example, a limited number of workers with specialist Al skills may design an Al system or tool for a company that is then used by hundreds or thousands of the company's customer service agents, analysts, or lawyers - none of whom have specialist Al skills. In fact, one thing that makes a well-known form of Al - generative Al - such a powerful technology is that typically it can be operated using simple everyday language with no technical skills required.

To capture Al's impact on all jobs, PwC analysed all jobs (and sectors) by their level of 'Al exposure.' A higher level of Al exposure means that Al can more readily be used for some tasks. Examples of occupations with higher Al exposure are financial analysts, customer service agents, software coders, and administration managers. The analysis revealed that sectors with higher Al exposure are experiencing much higher labour productivity growth. At the same time, the skills demanded by employers in Al-exposed occupations are changing fast. Read on to learn more.

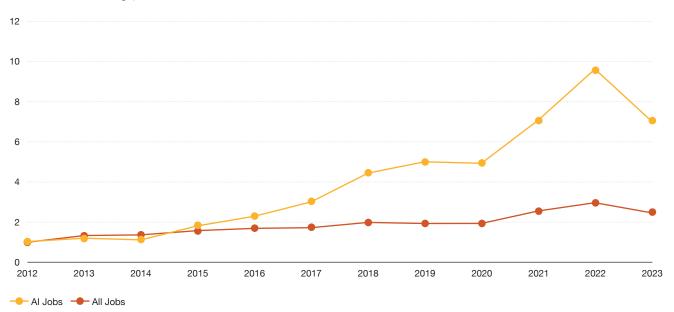
Key Terms

'Al specialist skills': Specialist, technical Al skills like deep learning or cognitive automation. See Appendix One for Al skills list.

'Al specialist jobs': Jobs that require specialist, technical Al skills.

'All jobs': All jobs in all occupations.

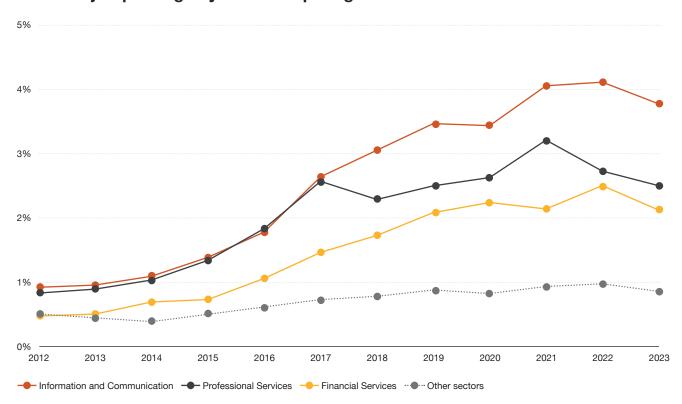
'Al-exposed': Describes all jobs or sectors in which Al can readily be used for some tasks (based on definition of Al Occupational Exposure developed by Felten et al.)


AI penetration is accelerating

Attention to Al's impact on the jobs market exploded in November 2022 with the launch of ChatGPT 3.5. However, the data shows that Al had quietly exerted a growing impact on the jobs market years before. Growth in Al specialist jobs has outpaced growth in all jobs since 2016, well before ChatGPT brought fresh focus to Al.

Today, there are seven times as many postings for specialist Al jobs as there were in 2012. In contrast, postings for all jobs have grown more slowly, doubling since 2012. Put another way, openings for jobs that require specialist Al skills have grown 3.5 times faster than openings for all jobs since 2012.

Growth in Al jobs has outpaced all jobs since at least 2016


Source: PwC analysis of Lightcast data. The analysis represents six of the fifteen countries: US, UK, Singapore, Australia, Canada, and New Zealand. Nine countries have been excluded due to data prior to 2018 being unavailable: France, Germany, Belgium, Denmark, Spain, Italy, Netherlands, Norway, and Sweden.

The 2022 peak in job postings above represents exceptionally high demand for workers which gradually eased in 2023 as job market conditions returned toward normal.

Knowledge work sectors have higher AI penetration

Knowledge work sectors in particular are seeing growing demand for jobs that require specialist Al skills. The share of job ads requiring these skills is higher in professional services, information & communication, and financial services - precisely those sectors predicted to be most exposed to Al.² Financial services has a 2.8x higher share of jobs requiring Al skills vs other sectors, professional services is 3x higher, and information & communication is 5x higher.

Share of job postings by sector requiring Al skills

Sources: PwC analysis of Lightcast data, UK Government Impact of AI on Jobs 2023. "Other sectors" includes Agriculture, Mining, Power, Water, Retail trade, Transportation, Accommodation, Real Estate, Administrative activities, Arts and Entertainment, Household activities, Construction, Manufacturing, Education, Health and Social Activities and Extraterritorial Activities sectors. Chart includes all 15 countries in this study.

² Al Occupational Exposure (AlOE), constructed by Felten et al (2018, 2019), scores and measures the degree to which occupations rely on abilities in which Al has made the most progress in recent years, meaning Al can more readily be used for some tasks in those occupations.

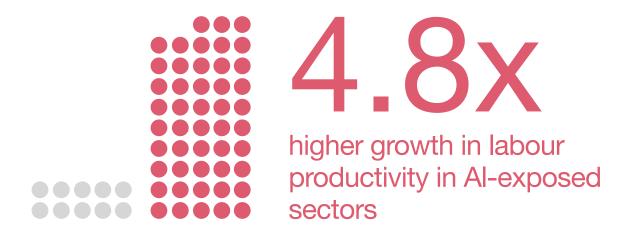
Al's value to companies is made clear by what is happening with the wages of workers with Al specialist skills - the very people who are making the Al revolution possible.

As we have seen, growth in jobs demanding AI specialist skills has outpaced growth in all jobs since 2016. What's more, these jobs carry up to a 25% wage premium on average, underlining the value of these skills to companies.

Below are average AI wage premiums for five countries for which there is sufficient data to perform the analysis. To show how this wage premium can affect individual occupations, wage premiums for selected occupations are given.

Wage premium for job vacancies which require Al skills by country

Occupation	Country Al Wage Premium				
	USA	UK	Canada	Australia	Singapore
Database Designers and Administrators	+53%	+58%	+8%	+14%	+35%
Lawyers	+49%	+27%	-	-	-5%
Sales and Marketing Managers	+43%	+14%	+3%	+7%	+3%
Financial Analysts	+33%	+32%	-	-	+11%
Applications Programmers	+32%	+24%	-	+7%	+34%
Systems Analysts	+30%	+34%	+15%	+7%	+28%
Accountants	+18%	+5%	+17%	-	+4%
Average wage premium across all jobs	+25%	+14%	+11%	+6%	+7%

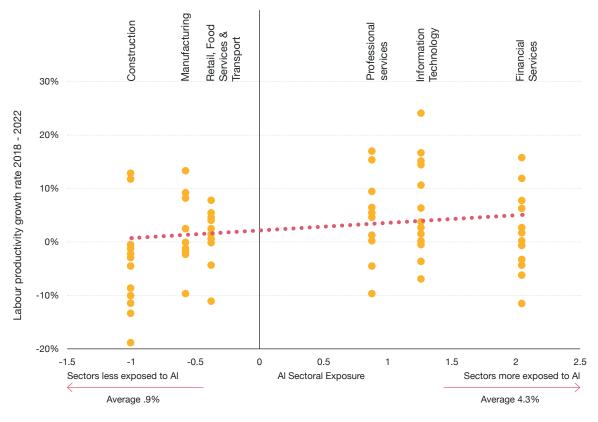

Sources: PwC analysis of Lightcast data, ISCO-08 Occupation Codes (4-digit level). 2023 data. These findings do not demonstrate a causal relationship. These estimates are calculated by comparing the average salaries of Al job postings to those of non-Al postings for the same occupations. Two filters are applied to ensure (1) the count of Al job postings and (2) the ratio of Al jobs:non-Al jobs being compared is above a certain threshold. The analysis provided represents five of the 15 countries: UK, USA, Singapore, Canada and Australia. The remainder of the countries have been omitted from this analysis as the data was less extensive: New Zealand, Italy, France, Germany, Spain, Belgium, Netherlands, Denmark, Norway and Sweden.

For example, job ads for US sales managers that require AI specialist skills offer wages that are on average 43% higher than job ads for sales managers that do not require AI skills. Canada's accountants can enjoy a 17% wage premium if they have AI specialist skills, and UK employers are willing to pay a 27% premium for lawyers equipped with AI skills.

So far this report has discussed jobs which require specialist AI skills like deep learning or natural language processing. But many, if not most, workers who use AI tools in their work do not have these skills. To understand how AI is affecting *all* jobs, PwC examined jobs and sectors by their levels of 'AI exposure' which means the degree to which AI can readily be used for some tasks. PwC's analysis revealed how higher levels of AI exposure appear to be affecting workers' productivity, numbers of job openings, and the skills that jobs require. First, let's see how AI may be affecting productivity.

Labour productivity growth has been sluggish in many nations for years. OECD countries have experienced a lost decade of labour productivity growth with weak average annual rises of 1.1% from 2011 to 2020, followed by declines in both 2021 and 2022.³

³ OECD, Labour Productivity and Utilisation. The pandemic had a negative impact on productivity in 2020-2022.


This stagnant labour productivity is a serious problem because it is a drag on economic growth, reducing potential tax revenues, chipping away at investment in public services and flatlining living standards.

Recently there has been much speculation that AI can supercharge workers' productivity. The good news is there is now evidence to suggest that this is not just wishful thinking, and is already fast becoming reality.

We have seen that three sectors - financial services, IT, and professional services - have higher AI exposure and higher AI penetration. How is this affecting productivity?

The data shows that these three sectors are seeing nearly 5x faster productivity growth than sectors with lower AI exposure (such as transport, manufacturing and construction).

Al exposure and labour productivity growth rate by sector. Each dot represents a country.

Sources: PwC analysis of OECD data, Felten et al. (2018, 2019). The AI Occupation Exposure (AIOE) constructed by Felten et al's (2018, 2019) AI Occupational Exposure (AIOE) scores and measures the degree to which occupations rely on abilities in which AI has made the most progress in recent years, meaning AI can more readily be used for some tasks. The AIOE score is a relative measure, where higher numbers indicate greater exposure to AI, meaning that even negative values still imply a certain degree of exposure to AI. To measure the growth rate in labour productivity, PwC used the OECD's GVA per person employed metric, indexed on 2018. Due to the availability of the OECD data, PwC focused on just six sectors. The 2023 OECD labour productivity data has not been released. Therefore the labour productivity growth rate between 2018 and 2022 is considered. If the view that AI is increasing productivity is correct, it would be expected that the pattern of stronger productivity growth for AI-exposed sectors would continue or accelerate in 2023. The '4.8x higher growth' is a comparison of averaged labour productivity growth rates; absolute growth rates are 0.9% and 4.3%.

While it is not possible to prove causation, this is an intriguing pattern. Unlike the computer revolution which took significant time to enhance productivity (economist Robert Solow once observed that the impact of the computer age was evident everywhere but in the productivity statistics), the data suggests AI is already doing so, right now. AI may be compressing the 'productivity J-curve' in which new technologies can take significant time to cause a sharp uptick in productivity.

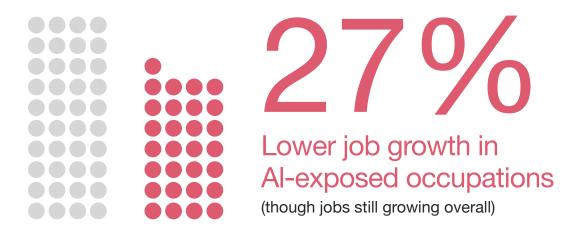
PwC's 2024 Global CEO Survey confirms that 84% of CEOs whose companies have begun to adopt Al believe it will increase efficiency in their employees' time at work.⁵ Increasing productivity means more than just doing the old things faster. It also means finding new, Al-powered ways to create value. In fact, 70% of CEOs say that Al will significantly change the way their company creates, delivers and captures value over the next three years.

Al does more than help workers do the old things faster. Al opens the door to new business models and ways of creating value.

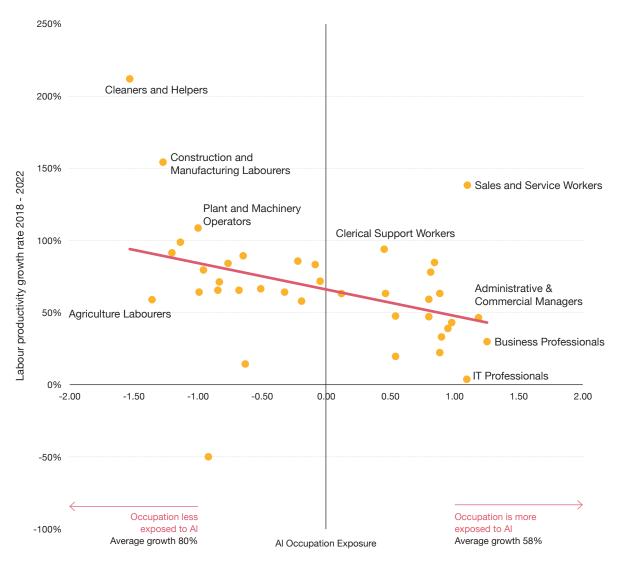
The implications for business are huge. Global CEOs anticipate that one form of AI - generative AI - will deliver significant top and bottom line benefits, with 46% saying it will increase profitability, and 41% saying it will increase revenue.

Investors agree. PwC's <u>2023 Global Investor Survey</u> shows that investors believe accelerated adoption of AI is critical to the value equation, with 61% of investors saying faster adoption is very or extremely important. When responses indicating 'moderately important' are included, the proportion jumps to 85%.

All of this adds up to a positive story for the global economy: a revolution in productivity and value creation.


⁴ Productivity J-curve,' Brynjolfsson et al., National Bureau of Economic Research.

⁵ Around a third of the respondents in our 2024 Global CEO Survey have begun to adopt Al. Of these, 84% believe it will increase employees' efficiency. These findings suggest that companies leading the way on Al deployment are seeing the benefits.

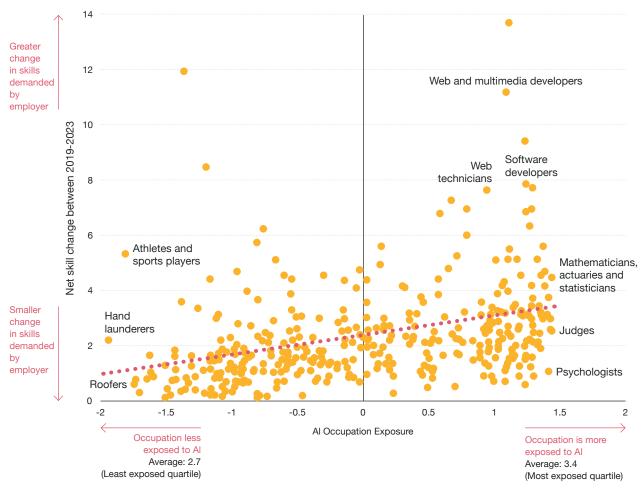


In Al-exposed occupations such as customer services and IT - a number of which have acute labour shortages - jobs are still growing, but 27% more slowly on average.

This could be good news for many nations facing shrinking working age populations and vast unmet needs for labour in many sectors. All can help to ensure that the labour supply is available for the economy to reach its full potential.

Job openings are still growing in Al-exposed occupations, but more slowly

Sources: PwC analysis of Lightcast data, ISCO-08 Occupation Codes (2-digit level) and Felten et.al Al Occupation Exposure. The cross-country comparison on the right hand side considers the difference in the growth in job postings between the occupations most exposed to Al and those least exposed to Al.


It is important to emphasise that job numbers in Al-exposed occupations are *still growing*. The data suggests that Al does not herald an era of job losses but rather more gradual jobs growth, helping to enable companies to find the workers they need.

The skills required by employers in Al-exposed occupations are changing fast. Old skills are disappearing from job ads - and new skills are appearing - 25% faster than in roles less exposed to Al.

Change in skills demanded by employers for occupations more (and less) exposed to Al

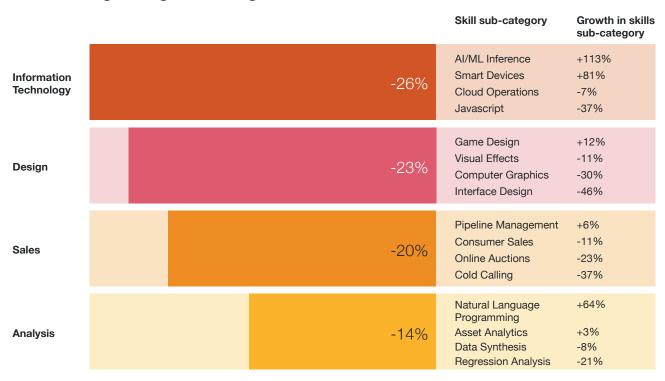
Sources: PwC analysis of Lightcast data, ISCO-08 Occupation Codes (2-digit level), Felten et al. (2018, 2019). The net skill change is based on Deming and Noray (2020) and is calculated by using the difference between 2019-2023 in the total number of skills required by job occupations using the ISCO-08 4-digit occupational codes. The Al Occupation Exposure is from Felten et al's (2018, 2019) and measures the degree to which occupations rely on abilities in which Al has made the most progress in recent years, meaning Al can more readily be used for some tasks. The correlation coefficient is .31 and is the statistical measure that quantifies the strength and direction of a linear relationship between net skill change and Al Exposure. To calculate the average net skill changes for the most and least exposed occupations to Al,an average of the net skill change of the top and bottom quartile of occupations is taken based on their exposure to Al. See Appendix Two for formula.

Workers in Al-exposed roles may need to demonstrate or acquire new skills to stay relevant in a jobs market that is fast-evolving. PwC's 2024 Global CEO Survey makes it clear that 69% of CEOs anticipate that generative Al will require most of their workforce to develop new skills, rising to 87% of CEOs who have already deployed generative Al. Workers need to take ownership of their learning, rapidly developing the skills to remain relevant and to embrace the opportunity Al brings.

There are clues to which skills workers may want to build to prosper in an AI age. Some of the skills rising fastest in demand are those which cannot easily be performed by AI. Below are four of the skills categories rising fastest in demand, and for each category a few examples are provided of specific skills with growing demand. From dam construction to sports instruction, some skills with booming demand are relatively hard for AI to perform.

FASTEST growing skill categories

Sources: PwC analysis of Lightcast data. Data based on 2019-2023. The overall growth in skill categories is calculated as the change in the average share of the skill category for all countries between 2019 and 2023.


On the other hand, what skills are declining in demand? Below are four skills categories with the steepest declines in employer demand, with a few illustrative examples of specific skills with falling (or rising) demand within each category.

The AI transformation is clear to see in categories like Information Technology where demand for AI-related skills like 'AI/Machine Learning Inference' is flourishing, while

⁶ Al/Machine Learning Inference means applying a machine learning model to a dataset to generate an output, insight, or prediction.

demand for some skills that may be more readily replaced by AI (such as coding in Javascript) is falling. The Analysis category shows a similar pattern with soaring demand for Natural Language Programming (an AI skill) and declining demand for Regression Analysis, a type of analysis AI can help to perform.

SLOWEST growing skill categories

Within the slowest growing skills categories, some sub-categories buck the trend and are growing fast. Some of these (like Al/ML Inference) are Al skills.

Sources: PwC analysis of Lightcast data. Data based on 2019-2023. The overall growth in skill categories is calculated as the change in the average share of the skill category for all countries between 2019 and 2023.

All is redefining what it means to be a financial analyst, a software coder, a customer service agent (and many more roles), opening up whole new possibilities for workers to deliver impact. Workers who learn to harness All are likely to have bright futures in which they can generate greater value and could consequently have greater bargaining power for wages - all within a context of rising societal prosperity.

Workers agree. PwC's <u>2023 Global Workforce Hopes and Fears Survey</u> shows workers expect mostly positive benefits from AI with 31% expecting AI to increase their productivity/efficiency and 21% expecting AI to create new job opportunities.

Many who predict AI will cause a sharp decline in job numbers are asking the wrong question. Those who predict AI will have a negative impact on total job numbers often look backward, asking whether AI can perform some tasks in the same way as they have been done in the past. The answer is yes. But the right question to ask is this: How will AI give us the power to do entirely new things, generating new roles and even new industries?

"

Al makes human labour more relevant and valuable, opening up new opportunities for people to develop new skills and enter new roles. Al will create new jobs for people that we haven't yet begun to imagine. Many of the fastest-growing jobs of today - from cloud engineer to digital interface designer - didn't exist 10 or 20 years ago and have been generated by technology. Like a spreadsheet or a saw, Al is a tool that makes people more powerful and capable. Workers who build the skills to harness Al will be more valuable than ever.

"

Pete Brown, Global Workforce Leader, PwC UK

Al often performs best in partnership with people. Without oversight, Al can miss context and nuance or give poorer quality output. Only humans can fully appreciate and navigate the people, processes, and context of individual organisations and situations.

"

As technology gets better at being technology, humans can get better at being humans. There is clear evidence that AI often delivers the best outcomes when used in partnership with people. The AI era requires a new style of leadership, an openness to bold transformation and inventive thinking about how AI and people together can create new forms of value.

"

Carol Stubbings, Global Markets and TLS Leader, PwC UK

Our analysis (particularly the finding about Al's potential impact on productivity) suggests that Al's effect on jobs may be similar to that of the internal combustion engine in the 20th century which reduced numbers of some jobs (such as horse trader) while at the same time creating far more jobs than it displaced (from truck driver to road engineer to traffic police).

"

Al provides much more than efficiency gains. Al offers fundamentally new ways of creating value. In our work with clients, we see companies are using Al to amplify the value their people can deliver. We don't have enough software developers, doctors, or scientists to deliver all the code, healthcare, and scientific breakthroughs the world needs. There is a nearly limitless demand for many things if we can improve our ability to deliver them.

"

Scott Likens, Global AI and Innovation Technology Leader, PwC US

Far from heralding the end of jobs, Al signals the start of a new era in which workers can be more productive and valuable than ever.

Instead of focusing only on how AI can take on some tasks formerly done by people, we should think inventively about how to make the most of AI to create new industries and new roles for people. Embracing AI in this way is one way to bring about continued positive outcomes for workers. Economist Eric Brynjolfsson observed, 'If AI is used mainly to mimic humans, to replace humans with machines, it is likely to lead to lower wages and more concentration of wealth. If we use AI mainly to augment our skills, to do new things, then it is likely to lead to widely shared prosperity and higher wages.'

⁷ The Second Machine Age, Eric Brynjolfsson

There is no going back to yesterday's jobs market, but - if carefully managed - the Al revolution could bring a bright future for workers and companies. Below are steps that companies, workers, and policymakers can take to help realise Al's promise to grow productivity and fuel rising shared prosperity.

Here is what companies can do. Business leaders can embrace, experiment, and create new uses of AI. They can think beyond using AI to do things the way they have been done in the past and instead use AI to generate new ways to create value. While AI can help to make existing processes more efficient, companies can realise even more benefit from AI by using it to reinvent business models or pioneer new product lines. Thinking inventively about how to use AI helps the company to be the disruptor rather than the disrupted, and it helps to create new opportunities for people.

Business leaders should view AI as a complement to people that is best used with human oversight. Leaders should track the ever-shifting 'jagged frontier'⁸ which marks where AI performs brilliantly versus where AI lacks capabilities or works best with human assistance. Companies can support employees to make the most of AI by offering training and helping them see how AI empowers them (and can even make their jobs more enjoyable by freeing them to work more autonomously and be more confident in their roles)⁹.

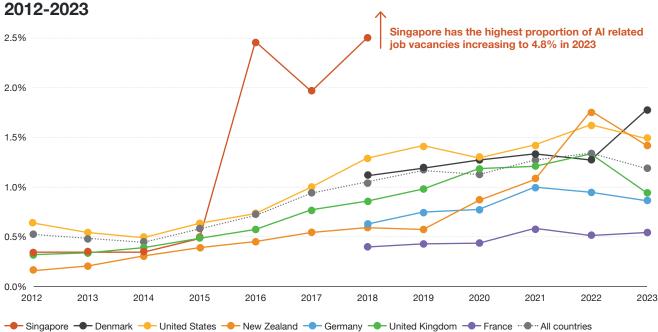
Firms can consider hiring on the basis of candidates' skills rather than focusing solely on their degrees, job history, or previous job titles. This helps firms find the workers they need, and it helps workers more readily adapt to a fast-changing jobs market. A study by PwC and the World Economic Forum conducted across 18 economies shows that a skills first approach has the potential to expand the talent pool by 100 million people. Companies can take a skills first approach for existing employees too, treating workers as people with sets of skills and talents that can be fluidly applied across the organisation. These 'skills based organisations' can more flexibly deploy workers, helping both companies and workers adapt to the AI transformation while opening up broader talent pools, developing more resilient talent pipelines for the jobs of tomorrow, and achieving enhanced levels of employee motivation, satisfaction, performance, and retention. 11, 12

Workers, for their part, should embrace AI, experimenting with it and seeking ways it can complement and enable them in their work. Workers should build the skills to be sought after in an AI age (for example, skills that either complement AI or are hard for AI to do). Some workers may need to adapt more than others to succeed in an AI era; for example, some workers may need only a little training to adopt AI tools while other workers may need to move to new occupations which require more extensive retraining or upskilling. Workers, companies, and policymakers share responsibility for helping all workers adapt to an AI era.

^{8 &#}x27;Navigating the Jagged Technological Frontier: Field Experimental Evidence of the Effects of AI on Knowledge Worker Productivity and Quality,' Fabrizio Dell'Acqua et al, Harvard Business School working paper

⁹ MIT Sloan Management Review: 'Achieving Individual - and Organisational - value with AI,' 2022.

¹⁰ Skills based organisations are integrating skills throughout the talent management lifecycle by implementing skills-based training programs for upskilling and reskilling, as well as establishing skills-based career pathways for redeployment.


¹¹ Skills-based sourcing & hiring playbook, Rework America Alliance, 2022

¹² Al can help with skills based hiring by, for example, automatically generating and updating skills profiles and working out adjacent skills people are likely to have or could readily learn.

¹³ Workers whose companies do not offer Al tools can experiment with public Al tools like ChatGPT. Workers should not use proprietary company data on public tools, but public tools still provide a wealth of opportunities to get to know Al's power.

Policymakers can encourage the use of AI to grow productivity and prosperity, for example by building the supportive policy environment, digital infrastructure, and skilled workforce to help realise AI's potential. Countries with the strongest growth in jobs that demand AI skills (an indicator of AI usage and penetration) offer lessons for policymakers in how to create an environment conducive to making the most of AI. The three countries in this study with the highest proportion of jobs that require AI skills are Singapore, Denmark, and the US. These are the same three countries that top the IMF's AI Preparedness Index ranking which measures areas such as digital infrastructure, human-capital and labor-market policies, innovation and economic integration, and regulation and ethics. Policymakers who would like their people to benefit from the AI revolution should take note.

Proportion of total job vacancies requiring Al related skills by country,

Sources: The IMF's AI Preparedness Index ranks countries' preparedness to adopt AI based on four pillars: Digital Infrastructure, Innovation & Integration, Human Capital & Policies and Regulation & Ethics.

Policymakers can support workers with training/retraining and safety nets, and shape the education system to help prepare workers for an AI age in which critical thinking, creativity, and adaptability are likely to be key skills. Finally, policymakers can strive to make sure that growing prosperity from AI adoption is widely shared.

Key areas for action

Policymakers

- Encourage the use of AI to grow productivity and prosperity
- Ensure growing prosperity from Al adoption is widely shared
- Support the use of AI to augment rather than replace workers
- Support workers with training/retraining, worker protections, and safety nets
- Shape the education system to help prepare workers for an Al age
- Ensure the responsible use of Al with PwC's Responsible Al framework

Businesses

- Embrace, experiment, and pioneer new uses of Al. Think beyond using Al to do existing tasks. Instead, pioneer new ways to create value.
- Build a climate of confidence and trust in using Al so people are more likely to welcome trying it.
- Use AI to complement people. Figure out where AI is best used in partnership with people.
- Hire on the basis of skills rather than only degrees or work history.
- Upskill workers to make the most of Al
- Use Al responsibly with PwC's Responsible Al framework

Workers

- Embrace and experiment. Seek ways to make the most of AI to complement and empower you
- Build skills to be sought after in an Al-driven jobs market (e.g. skills that complement Al or are difficult for Al to do)

PwC's analysis of over half a billion job ads worldwide suggests that AI may help make workers more productive, opening the door to rising prosperity for workers and nations. Like past technological revolutions from electricity to internal combustion engines, AI is changing what it takes for workers to succeed - and those who adapt may enjoy vast new opportunities.

Acknowledgements

Partner Sponsors

Carol Stubbings

Global Markets and TLS Leader

Scott Likens

Global AI and Innovation Technology Leader

Peter Brown

Global Workforce Leader

Contributors

Barret Kupelian

Director, Chief Economist barret.g.kupelian@pwc.com

Sarah Brown

Director, Global Corporate Affairs sarah.x.brown@pwc.com

Mehdi Sahneh

Senior Manager, Economist mehdi.sahneh@pwc.com

Simon Oates

UK Economics Leader

Justine Brown

Director, Global Workforce

Adam Deasy

Senior Associate, Economist adam.deasy@pwc.com

Nabil Taleb

Senior Associate, Economist nabil.taleb@pwc.com

Harry Ingham

Associate, Economist harry.a.ingham@pwc.com

Dr. Ilhan Guner

Academic Advisor University of Kent

Advisors

Tom Pagram

Partner, Artificial Intelligence Leader & Chief Technology Officer, PwC Australia

Johan Jegerajan

Partner, CEMEA and UK Consulting CTO, PwC UK

Dr. Alexis Crowe

Lead, Geopolitical Investing practice, PwC US

Ashootosh Chand

Partner, Digital & Emerging Technologies, PwC india

Eugénie Krijnsen

Partner, Global Financial Services Advisory Leader, PwC Netherlands

Ilana Golbin Blumenfeld

Director, Emerging Technologies & Responsible Al Lead, PwC US

Mir Kashifuddin

Partner, Data Risk & Privacy Practice Leader, PwC US

Tom Lewis

Partner, Head of Commercial Technology, PwC UK

Mitra Best

Partner, Technology Impact Leader, PwC US

Euan Cameron

Partner, UK Artificial Intelligence and Drones Leader, PwC UK

Maria Axente

UK Responsible AI and AI for Good Lead, PwC UK

Rob McCargow

Director, UK Technology Impact Leader, PwC UK

Calen Byers

Partner, Financial Services -Asset & Wealth Management -Real Assets, PwC US

Parul Munshi

Partner, Workforce Transformation PwC South East Asia Consulting, PwC Singapore

Prasun Shah

Partner, UK Tax Workforce, PwC UK

Julia Lamm

Partner, Workforce Transformation, PwC US

Anthony Bruce

Partner, Chair of Health Industries, PwC UK

Eyhab Abdeen

Partner, Middle East Workforce, PwC Middle East

Bastiaan Starink

Partner, Workforce, PwC Netherlands

Paul Kett

Senior Adviser and Global Director Education and Skills, PwC UK

Patrick Pugh

Partner, Principal, Global Microsoft Alliance and Transformation Leader, PwC US

Bhushan Sethi

Partner, Strategy&, PwC US

Barbara Baarsma

Chief Economist, PwC Europe

Amv Cai

Managing Partner, ESG, PwC China

Jennifer Kosar

Trust and Transparency Solutions Leader, PwC US

Appendix one: AI skills list

'Al jobs' are defined here as jobs that require one or more technical Al skills. Here is the complete list of Al skills used:

mlpack (C++ Library)

Nvidia Jetson

Watson Conversation Robotic Systems IPSoft Amelia Apache MADlib Loss Functions Dask (Software)

Pydata

Advanced Robotics

Seq2Seq Watson Studio Vowpal Wabbit Matrix Factorization

Kaldi

Google Cloud ML Engine Semi-Supervised Learning

Dlib (C++ Library)

Robotic Liquid Handling Systems

Lexalytics

Amazon Comprehend Semantic Parsing

Automated Machine Learning Dialogflow (Google Service)

Word Embedding AWS SageMaker Amazon Textract

Natural Language Generation Machine Learning Methods

Voice User Interface Test Datasets

Cyber-Physical Systems Part-of-Speech Tagging Image Segmentation

Convolutional Neural Networks

Deep Learning Methods

Feature Learning
Autonomous Vehicles
Azure Machine Learning
Relationship Extraction
Word-Sense Disambiguation

Cognitive Automation
Programmatic Media Buying

Transfer Learning

Long Short-Term Memory (LSTM)

Amazon Lex Caffe2

Conversational Al Kernel Methods

Adversarial Machine Learning Unmanned Aerial Systems (UAS)

Amazon Polly

Language Identification

Guidance Navigation And Control

Systems

Natural Language Understanding

Fast.ai

Ensemble Methods
Training Datasets
Meta Learning
Speech Synthesis
Autoencoders
Pose Estimation

Intelligent Virtual Assistant Voice Assistant Technology

Gradient Boosting
Apache SINGA

Oracle Autonomous Database

Microsoft LUIS Apache MXNet

Open Neural Network Exchange

(ONNX)

Azure Cognitive Services Cognitive Computing Bot Framework

Torch (Machine Learning)
Gesture Recognition
3D Reconstruction

Autonomous Cruise Control Systems Advanced Driver Assistance Systems

Multi-Agent Systems Artificial Intelligence

Applications Of Artificial Intelligence

Artificial Intelligence Markup

Language (AIML) Amazon Alexa

ANTLR

Optical Character Recognition (OCR)

Artificial General Intelligence

Artificial Intelligence Systems Artificial Neural Networks

Computer Vision

Association Rule Learning Autonomic Computing Autonomous System Naive Bayes Classifier

Classification And Regression Tree

(CART)

CHi-Squared Automatic Interaction

Detection (CHAID)

Decision Tree Learning

Cluster Analysis

Computational Intelligence Computational Linguistics

Image Analysis Decision Models Dialog Systems

Digital Image Processing Dimensionality Reduction

Expectation Maximization Algorithm

Embedded Intelligence

Evolutionary Acquisition Of Neural

Topologies

Evolutionary Programming

Expert Systems
Fuzzy Logic
Gaussian Process
Genetic Algorithm

General-Purpose Computing On Graphics Processing Units Hyperparameter Optimization Handwriting Recognition Hidden Markov Model

Contextual Image Classification

Image Matching
Inference Engine
Information Extraction
Intelligent Agent
Intelligent Control
Cognitive Robotics
Intelligent Systems
Interactive Kiosk

Knowledge Engineering
Knowledge-Based Systems

Language Model

Machine Learning Algorithms

LIBSVM

Machine Learning Reasoning Systems

Machine Translation

Machine Vision

Markov Chain Motion Analysis

Motion Planning

Natural Language Processing Natural Language Programming Natural Language Toolkits

Natural Language User Interface Nearest Neighbour Algorithm Named Entity Recognition Natural Language Processing

Systems

NLTK (NLP Analysis)

OmniPage OpenCV

Apache OpenNLP

Sorting Algorithm

Knowledge-Based Configuration

Question Answering Recommender Systems

Eye Tracking TensorFlow Object Recognition Voice Technology

Path Finding

Remote Sensing

Robot Framework Robot Operating Systems

Robotic Automation Software

Screen Reader Semantic Search Sentiment Analysis

Servomotor

Semantic Interpretation For Speech

Recognition Soft Computing

Speech Enhancement Speech Processing

Speech Recognition Software

Speech Technology

Statistical Language Acquisition

Supervised Learning Support Vector Machine Swarm Intelligence

Text Mining

Tokenization Feature Selection Image Sensor

Speech Recognition Weka

Reinforcement Learning

Shogun

Robotic Programming

Sirikit

Path Analysis Semantic Analysis

SLAM Algorithms (Simultaneous Localization And Mapping)

Data Classification

Facial Recognition Feature Engineering

Chatbot

Collaborative Filtering Voice Interaction Predictionio

N Gram

Random Forest Algorithm Apache Spark

Text Classification Realsense

Caffe Deep Learning

Face Detection Latent Dirichlet Allocation

AdaBoost (Adaptive Boosting) Theano (Software)

Keras (Neural Network Library)

Cortana Disambiguation Deeplearning4j

Chainer (Deep Learning Framework) Scikit-Learn (Python Package)

Perceptron Pybrain

Word2Vec Models

Xgboost Mnist

Objective Function

Microsoft Cognitive Toolkit (CNTK) Recurrent Neural Network (RNN)

Boosting Baidu Game Ai Dbscan

Feature Extraction

Imagenet

Apache Mahout Lemmatization

Light Detection And Ranging (LiDAR) PyTorch (Machine Learning Library)

Confusion Matrix K-Means Clustering Unsupervised Learning **Activity Recognition**

Artificial Intelligence Development

MLflow PaddlePaddle Google AutoML

H2O.ai

Hugging Face (NLP Framework) **Hugging Face Transformers**

DeepSpeech Image Recognition OpenVINO

MLOps (Machine Learning

Operations)

BERT (NLP Model)

fastText OpenAl Gym Kubeflow

AlOps (Artificial Intelligence For IT

Operations) Text-To-Speech GPT-3 (NLP Model)

Sphinx Speech Recognition

Explainable AI (XAI)

Generative Adversarial Networks

AI/ML Inference

Machine Learning Model Monitoring

And Evaluation

Machine Learning Model Training Transformer (Machine Learning

Model)

Variational Autoencoders

ChatGPT Deck.gl

Large Language Modeling

PyTorch Lightning Attention Mechanisms Boltzmann Machine

Generative Artificial Intelligence

Nuance Mix

Prompt Engineering

ModelOps

Operationalizing Al

Appendix two: Calculating net skill change

Here is how the turnover in skills required by employers (net skill change) is calculated.

How net skill change is calculated

The net skill change is a measure of the change in the frequency of skills required by employers for a particular occupation. This metric and its associated methodology to be calculated was developed by Harvard economists, David Deming and Kadeem Noray (2020).

Below we present the formula and walk through an example.

In short, the net skill change takes the absolute value of each skill change for an occupation and sums them. As it measures the absolute value the value is always positive. It is capturing skill changes be they positive or negative and adding them. The more changes in skills demanded by an employer be they demanded more or less (positive or negative), the higher this net skill change value.

Formula:

$$Net \, Skill \, Change_{o,t2,t1} = \sum_{s=1}^{S} Abs \left[\left(\frac{Skills_{o,t2}^{s}}{JobAds_{o,t2}} \right) - \left(\frac{Skills_{o,t1}^{s}}{JobAds_{0,t1}} \right) \right]$$

Example:

If skill A is mentioned 50 times in 2019 and then 65 times in 2023 (and we assume job postings remained constant in both time periods at 100 for example). The skill change would be 65/100 - 50/100 = 15/100 = +0.15.

If skill B is mentioned 30 times in 2019 and then 25 in 2023 (in 100 postings in both periods), the skill change would be 25/100 - 30/100 = -5/100 = -0.05.

The net skill change the sum of the absolute values:

Net skill change for job X = 0.15 + 0.05 = 0.20.

© 2024 PwC. All rights reserved. PwC refers to the PwC network and/or one or more of its member firms, each of which is a separate legal entity. Please see www.pwc.com/structure for further details. This content is for general information purposes only, and should not be used as a substitute for consultation with professional advisors.

At PwC, our purpose is to build trust in society and solve important problems. We're a network of firms in 151 countries with over 360,000 people who are committed to delivering quality in assurance, advisory and tax services. Find out more and tell us what matters to you by visiting us at www.pwc.com.